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Introduction

The choice of pivots for quickselect [1] affects its per‐
formance greatly.
Common pivot strategies include random selection [1]
and median‐of‐3 [2].
This project improves on previous work on sampling‐
based pivot strategies [3] by estimating the order
statistics of random samples with a discrete beta dis‐
tribution without replacement.
This estimate is used to derive a robust pivot strategy
that is consistently efficient regardless of input char‐
acteristics.

Background

The following notational conventions are used.

A The input array.
n Size of the array.
k Rank of the target element.
Ai ith element of the array A.
A(i) ith smallest element of the array A.
rA(x) Rank of the element x in A.

At each iteration of the quickselect algorithm, a pivot p
is chosen and the array is partitioned based on each el‐
ement’s relation to p. Then, the algorithm continues in
the partition that contains A(k).
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Figure 1. A visualization of the partition operation.

Importantly, the exact order of the chosen pivot can
only be determined after the partition operation. Thus,
choosing a good pivot efficiently is challenging.

If we choose a pivot that is close to A(k) (i.e. rA(p) ≈ k),
the search space can be reduced very efficiently. Con‐
sider the following figure for an example of how two
well‐chosen pivots close to A(k) can drastically reduce
the search space.

0 n ‐ 1k

Figure 2. Pivots close to A(k) can reduce the search space quickly.

However, proximity to A(k) by itself is not enough. Con‐
sider the following figure, where a pivot is repeatedly se‐
lected to be slightly to the left of A(k).
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Figure 3. Simply choosing pivots near A(k) may have poor results.

Even though the chosen pivots are close to A(k), the
search space is not reduced effectively. Thus, not only
is it important for the pivot’s rank to be close to k, but it
should also be at the correct side of k. That is, the pivot’s
rank should be closer to the middle of the array than k.

Then, how can we choose pivots that are good: pivots
that are ranked near k yet closer to the middle than k?

By randomly sampling the array and carefully choosing a
pivot from the sample, we can efficiently choose a pivot
that has a high probability of satisfying both conditions.

Methods

The basic architecture of the sampling pivot strategy is to
randomly sample m values from the array, then choose
a pivot from the sample S.
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Figure 4. A visualization of the sampling pivot strategy.

The sampling can be done in‐place by using a truncated
Fisher‐Yates shuffle. [4] (This creates a random sample
without replacement.)

Intuitively, it is reasonable to assume that the
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smallest value in S will estimate A(k).

More formally, the probability distribution of S(i) can be
derived as follows.
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Thus, if we select the (k+1)(m+1)
n+1 −1’th smallest value from

S, its rank in A will estimate k.
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Figure 5. The probability distribution of rA
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However, simply choosing values close to A(k) is not a
good pivot strategy. Note that the red part of the dis‐
tribution in figure 5, which signifies a poor pivot (values
further away from the middle than A(k)), is very large.

To minimize the probability of choosing a bad pivot, the
rank to select can be shifted towards the middle propor‐
tional to σ

[
rA

(
S(i)

)]
. A larger shift reduces the probabil‐

ity of choosing a bad pivot, but also increases the average
distance between the pivot and A(k).
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Figure 6. The shifted probability distribution.

Note that the red area in figure 6 is much smaller than
the one in figure 5 thanks to the shift.

Finally, using the fact that the search space reduces to
n√
m
every two iterations, the optimal m can be shown to

be ∼ n
2
3 . Thus the final algorithm is as follows.

Function ChoosePivot(A, n, k)
if n < THRESHOLD then

return random number in [0, n);
else

m← n
2
3 ;

S ← randomly sample m elements from A;
i← m+1

n+1 (k + 1)− 1;
σ ←

√
(n+1)(n−m)(m−i)(i+1)

(m+1)2(m+2) ;
Shift i towards m−1

2 by 2m
n σ;

return QuickSelect(S,m, round(i));
end

Results

The performance of four quickselect algorithms was
measured on various datasets. Three of them (‘random’,
‘ninther’, and ‘sampling’) are identical except for the pivot
strategy, and ‘libstdc++’ uses GNU libstdc++’s imple‐
mentation of std::nth_element().

For each benchmark, the input data was 100 randomly
generated arrays of 2×106 uniformly distributed integers.

The first experiment measured the performance of each
algorithm for different values of k. The performance of
each algorithm was measured for k = 0 to 2 × 106 with
an interval of 105 (21 measurements in total).

0

2

4

6

8

10

12

14

16

18

0 0.2 0.4 0.6 0.8 1

Random Ninther Sampling libstdc++

Figure 7. The relation between k/n (the relative position of the
target) and the time taken (in ms) for each algorithm.

Thanks to its adaptive nature, the ‘sampling’ strategy ex‐
cels for k values farther from the middle. It outperforms
every other algorithm significantly for all k.

The next experiment measured the performance of cal‐
culating the median of the inputs.
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Figure 8. A box plot of the time taken (ms) for each algorithm to
calculate the median for 100 datasets.

While the other algorithms vary in performance signifi‐
cantly depending on the input, the ‘sampling’ strategy is
remarkably consistent. Its worst case is faster than the
best case of the other algorithms.

Conclusion

The application of statistical analysis to design a pivot
strategy for quickselect was a success. The new pivot
strategy significantly outperformed existing algorithms,
and was extremely consistent over different inputs.

Future work to rigorously verify the theoretical basis of
this algorithm may prove to be fruitful.
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